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Students learn mathematics by doing mathematics, engaging in tasks and 
activities, mediated by the teacher.  Technology’s influence on students’ mathematical 
learning is either amplified or limited through the kinds of mathematical tasks and 
activities teachers provide.  The newest generation of handheld technologies can provide 
unique opportunities for students to do mathematical tasks in new ways that have the 
potential to foster learning and develop understanding.     

Many of the graphing calculators and computer algebra systems in use today are 
tools for computation or displaying mathematical relationships in a variety of 
representations. In particular, graphing calculators have had an effect on the mathematics 
curriculum in secondary schools in the United States, making popular the rule of three – 
graphs, tables and symbols- as ways to represent and analyze relationships. Dynamic 
geometry computer software such as Geometer’s Sketchpad or Cabri allows students to 
manipulate geometric objects and see continuous updates of measurements and 
constructions. The research on the appropriate use of both of these technologies suggests 
that they can have a positive influence on what and how students learn mathematics.  For 
the work on handheld graphing technology, see for example, Burrill, et al, 2002; 
Ellington, 2003, 2006; Graham & Thomas, 2000; Schwarz & Hershkowitz, 1999; Hollar 
& Norwood, 1999.  Dynamic geometric software helps students explore, conjecture and 
explain geometric relationships, serves as a basis for developing understanding of proof, 
and it use can produce measurable learning gains (Jones, 2002; Hollebrands et al, in 
press).  However, the research also makes clear that what is important is how both of 
these technologies are used in classrooms by teachers. 

New technologies such as TI-Nspire bring together both of these environments in 
one handheld, providing the opportunity to create an even wider variety of dynamic 
linked representations, where a change in one representation is immediately and visibly 
reflected in another. For example, a user can manipulate the graph of a function by 
grabbing and dragging and immediately see the resulting changes in the algebraic form.  
Dynamic links among spreadsheets, graphing environments, geometry settings, and 
symbolic expressions allow students to take meaningful actions on mathematical objects 
and immediately see the consequences of those actions.  Together with a document 
structure similar to folders in a word processing package, this new technology enables 
students to enter an environment where they can explore mathematical concepts in new 
and deep ways. 

To exploit this dynamic environment, just as with handhelds and dynamic 
geometry software, students need to have adequate opportunities to conjecture, reflect, 
explain, and justify. Thus, what the teacher asks students to do and to think about is 
critical if the technology is to be a tool for learning mathematics as well as doing 



mathematics. And much of what teachers ask students is based on the materials they use. 
The design of technology-based activities for learning mathematics, however, 

needs careful consideration.  There is a real danger that such materials will fall into 
categories absent any emphasis on what mathematical learning they will enable.  For 
example, materials such as the following are likely to appear (adapted from Belfort & 
Guimaraes (2004): 1) the author's interest is on mastering the use of the technology 
where the mathematics is secondary; 2) the activity is merely a demonstration of an idea 
where students are treated as spectators; 3) the activity revisits a mathematical topic to 
show how it can be done in a simple way with the new technology where the students' 
role is verification; 4) the author replicates activities from the point of current 
instructional materials, underestimating the technology's potential, where the ideas are 
fragmented and obtaining a formula is often the objective.  Materials developed for TI-
Nspire can suffer from these same pitfalls: construction of the mathematical objects 
involved in the problem can be the focus along with all of the details needed to master the 
device; elaborate constructions demonstrate a relationship but allow no interaction on the 
part of students, the device is used to check answers rather than investigate what answers 
might be possible and why; activities replicate what can be done on a graphing calculator 
with no attention to the opportunities afforded by the new capabilities. 

Some guiding principles can facilitate the development of materials and activities 
for TI-Nspire that takes advantage of the potential of the device to enhance mathematical 
learning (Dick et al, 2007): 

 
 Activities should have a clear focus on important mathematical ideas. 
 Activities should allow students to deliberately take mathematically meaningful 
actions on objects and to immediately see the mathematically meaningful 
consequences of those actions. 

 Activities should include inquiry tasks of high cognitive demand. 
 

Even with the framework of these principles, the almost unlimited opportunities 
provided by the device (currently five different applications that can be connected in 
multi-dimensional ways: graphs and geometry, calculator, lists and spreadsheets, data and 
statistics, and notes) are daunting.  While many teachers (those technology inclined) are 
excited by these possibilities, many others are overwhelmed by the knowledge needed to 
understand how to use all of the applications.  Participant evaluation data from TI-Nspire 
workshops include comments such as the device is far too complex for most students, 
which in fact, is probably not true but instead is a reflection of the teachers' own 
insecurity with learning to operate the device.  Given this perception and beliefs on the 
part of teachers and given the premise that TI-Nspire can help more students learn more 
and better mathematics, we need to look carefully at the materials we put into the hands 
of teachers.  

The view that my colleagues, Wade Ellis and Tom Dick, and I have taken is that 
by imposing constraints on what is possible, teachers and students will actually have 
more freedom to explore important mathematical concepts in deeper ways.  Thus, we are 
looking to the creation of "microworlds" in which students can play with a mathematical 
idea in a variety of ways but where the opportunity to go astray, both mathematically and 
operationally, is limited.  A microworld is similar to an applet, but many applets are 



designed for a specific outcome (e.g. the applets developed at the Freudenthal Institute 
http://www.fi.uu.nl/wisweb/en/). We envision a microworld to have several general 
applications related to a concept and grounded in developing conceptual understanding.  
As our notion of microworlds evolves, these worlds seem to have certain characteristics.  

  
 They require very little knowledge on the part of the user of the device itself and 

 how it operates.   
 The fundamental idea is simple and straightforward.  The development has both 

 mathematical fidelity (is mathematically sound and accurate) and pedagogical 
 fidelity (does not present obstacles such as cluttered screens or too many decimal 
 places that interfere with learning) (Dick & Burrill, 2006).  

 The design is based on the action consequence principle described above, taking a 
 mathematical action and immediately seeing the consequences. 

 The "world" is based on a template that usually has one object such as a point, 
 line, shape or graph serving as a driver for the interaction.    

 Using this template, a series of learning activities can be constructed either by the 
 classroom teacher or another author that will enable teachers to adapt this "world" 
 for their particular mathematical objective. 

 The world is based on important mathematics. 
 

MICROWORLDS 
One example of a microworld might be a template that contains a line and a slope 

triangle (the triangle formed by using the change in y and the change in x for two points 
on the line) with the formula for slope on screen and linked to the triangle (Figure 1). The 
mathematical action is to drag one of the points on the line or the line itself; the 
consequences are changes (or not) in the lengths of the sides of the triangle, the 
numerator and denominator in the slope formula and to the slope. Given this template, a 
variety of explorations and appropriate inquiry questions can be created that will allow 
students to investigate slope dynamically, where they cause changes and follow up on the 
consequences.  
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Figure 1: Slope triangle    Figure 2: Algebraic expressions 
 
Another example is a template that has a number line with a point that displays 

integer values as you drag it (Figure 2).  Algebraic expressions in text boxes visible on 
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the screen are linked to the point. As you drag the point, the values for the expressions 
appear under the expressions. The questions can engage students in thinking about 
variables, evaluating expressions, solving equations (Will the expression ever be equal to 
1?), inequalities (For what x will the first expression generate values that are less than the 
second? Why?), and linearity (How does the output change for a given change in x? Is 
there any regularity?) 

With small changes, the same template can be used in multiple settings. Figure 3 
shows the same basic template concept but using two variables. The questions might 
focus on equality, inequality, rates of change, or systems of equations. 
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 Figure 3: Pairs of expressions  Figure 4: Plotting the solutions 
 
On a second page, the teacher may choose to collect the values that make the 

expressions equal in a spreadsheet and plot them (Figure 4). The questions can push 
students to consider what relationship exists among the values that make the two 
expressions equal and what in the expressions themselves might account for this. 
Students can change the expressions on their own or at the teacher's direction by clicking 
on the text box and changing a single value or rewriting the entire expression.  

The action-consequence principle where one object "drives" another has been 
useful in thinking about classes of templates, depending on the objects. The examples 
above are based on changing a point to drive a change in the numerical result of an 
expression. Figures 5 and 6 show how changing a point drives a change in the shape to 
investigate the properties of a parallelogram that are essential in computing area. 
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 Figure 5: Area of square   Figure 6: Area of parallelogram 
 
Another example could use a graph as a driver, for example where a change in one 



graph causes change in another graph, i.e., graphing a function and its derivative.  
 

IMPLEMENTATION 
Our immediate work has been in response to content areas that have emerged in a 

study of high stakes state assessments (e.g., end of course or high school exit exams) as 
areas in which student achievement is low.  Such areas include reasoning about concepts 
and relationships; perimeter, area and volume; and manipulation of algebraic expressions 
(Burrill & Dick, 2007). The work is really in the first stages. We have designed several 
templates and have used them in a variety of settings with teachers who primarily been 
technology users, i.e., workshops, conferences, focus sessions, working groups. They 
have been used in two university courses: a mixed undergraduate and graduate (which 
included practicing teachers) course and a preservice course for prospective secondary 
mathematics teachers, where the backgrounds ranged from experienced technology users 
to minimally proficient. The initial reactions seem to be of two kinds, enthusiasm and 
willingness to design lessons around the templates that take advantage of the 
opportunities it provides and concern about how to use the templates effectively where 
some of the lessons offered do not get at the deeper learning issues in a substantive way. 
A more detailed analysis will be conducted at the end of the semester.  

The input thus far has raised some critical issues that need to be addressed as we 
move forward. One relates to the actual design of the template to maximize learning. Just 
as in Japanese lesson study (see Makoto, 2002, for example), where seemingly minute 
features of a lesson are carefully examined for their contribution to developing 
understanding, the design of the templates has to be equally as carefully done if using the 
template is to enable learning. For example, one of the areas identified as problematic for 
students was dealing with problems involving percents. The template in Figure 7 was the 
first attempt, where dragging either point changes the base, the part and the percent. It is 
also possible to change the unit or the scale in the upper left corner.  
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Figure 7: Percent segments   Figure 8: Percent as area 
 

However, the design raised questions for those using it. The undergraduates and 
graduate students as well as some teachers wanted to change the order of the segments, 
putting the segment representing the whole under the segment representing the part. One 
of our colleagues (Arnold, 2008) suggested an alternate approach, where percent is 
represented as area (Figure 8). Modifying the design is not something to be done lightly, 
as each option might have real implications for learning. Because the usual way to set up 
a fraction is with the part in the numerator and the whole in the denominator, is that the 



more intuitive way for students? Or is it actually more sense-making for a student who 
has not had this prior knowledge to begin with the whole, leaving it above the segment 
representing the part. Does using an area model bring conceptual disadvantages that 
might interfere with later learning? Favoring one of the three versions over the others 
raises these and other questions.  

Other design issues relate to using discrete vs. continuous values in certain 
settings; for example, will having a continuous version of the number line template in 
Figure 2 be useful. Does the placement of labels make a difference; in Figure 8, should 
the 40% be inside the rectangle? Should the complement be there as well? How much 
detail on the screen is important for developing understanding of a concept; i.e., in Figure 
5 should the formula at the top say b ⋅h =15.354 ⋅10.378u2 = area ? Thus, part of our 
work is to frame research around such questions that will inform the design of specific 
templates and also begin to give us general guidelines for continuing the development of 
templates for a broader set of mathematical concepts.  

The trial work with teachers also made clear that at some level, they needed to 
understand the reasons why the design was as it was. In some cases, teachers modified 
the template according to their notions and removed an important pedagogical element 
(the angle measures in Figure 5 and 6) or created possibilities for misconceptions 
(removing the measure of the base in Figure 5). Thus, if teachers are to maximize the 
templates as learning devices, some scaffolding has to be provided that will enable them 
to make sense of how the design contributes to student learning. 

A second issue related to the use of the templates is also connected to 
implementation: how to help teachers learn to ask questions that probe at student thinking 
and open up opportunities for learning. If the tool is to be one for learning mathematics as 
well as doing mathematics, students need to respond to questions that ask them to 
conjecture (what if…, how could …), reflect (why did…, how are they alike…), explain, 
and justify. Thus, teachers need to design lessons using the templates mindful of those 
goals and questions that will lead to those goals. Framing such inquiry questions is not 
easy: in our first attempt at posing questions for the percent template, we realized that we 
had focused on narrow closed questions. The educators with whom we shared our next 
iteration challenged some of our questions. In the workshops, teachers often moved 
rapidly through a template, dragging the point or the graph and commented on what they 
observed. Thinking about the questions they might have students consider when they 
used the template was difficult for them. A major challenge will be provide support for 
teachers to learn how to pose such questions and manage the responses. 

Based on our limited experience, the templates do seem to open avenues for 
student thinking and create opportunities for discussion not only about the mathematics 
but about strategies for using the template to reason about the mathematics. For example, 
some teachers made deliberate changes in what they can move and record the results; 
Using the number line template (Figure 3), some held the x-value constant, increased the 
y-value by 1 unit at a time, and recorded the output then changed the x-value by 1 and 
repeated the process; others looked at extremes, what happens to the difference between 
the expressions when x is large or when x is small. Helping students understand how to 
think in these ways is a fundamental part of learning to do mathematics, and it will be 
important for teachers to recognize this. 

The next phase of the work is to formally pilot the templates and to consider the 



implications for research related to both the design and implementation. The potential is 
clearly present to make a difference in what students learn; the challenge is to make this 
happen in ways that can be replicated across the teaching community. 
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